Article 10421

Title of the article

The role of VDAC2 in Bak-, Bax-mediated apoptosis: prospects for use in therapy (a review of literature) 

Authors

Anastasiya A. Bolotskaya, Student of the International school “Medicine of the Future”, Sechenov University (building 2, 8 Trubetskaya street, Moscow, Russia), E-mail: NastasiaBolotskaia@mail.ru
Vladimir N. Nikolenko, Doctor of medical sciences, professor, head of the sub-department of human anatomy, Sechenov University (building 2, 8 Trubetskaya street, Moscow, Russia); head of the sub-department of normal and topographic anatomy, Lomonosov Moscow State University (1 Leninskiye gory, Moscow, Russia), E-mail: vn.nikolenko@yandex.ru
Mariya V. San'kova, Student of the International school “Medicine of the Future”, Sechenov University (building 2, 8 Trubetskaya street, Moscow, Russia), E-mail: cankov@yandex.ru
Negoriya A. Rizaeva, Candidate of medical sciences, associate professor, associate professor of the sub-department of human anatomy, Sechenov University (building 2, 8 Trubetskaya street, Moscow, Russia); associate professor of the sub-department of normal and topographic anatomy, Lomonosov Moscow State University (1 Leninskiye gory, Moscow, Russia), E-mail: rizaevan@yandex.ru 

Index UDK

616-092 

DOI

10.21685/2072-3032-2021-4-10 

Abstract

Apoptosis is of great importance for tissue homeostasis and normal embryo- and ontogenesis. Currently great attention is paid to the study of mitochondrial apoptosis that can be realized through the interaction of proteins Bax and Bak, the key regulators of internal apoptosis pathway, and the channel in the outer mitochondrial membrane – VDAC2. Besides the need to study in detail the mechanisms of the internal apoptosis pathway for inducing cellular death in the malignant neoplasms' treatment, the prospects for developing methods to inhibit cell death are emphasized. In this article we analyzed the data on Bak and Bax interaction with VDAC2, present the current understanding of the mechanisms of Bak and Bax recruitment to the outer mitochondrial membrane, consider the disorders of these interactions in some pathological conditions, as well as the prospects for their therapeutic application in cancer and neurological diseases. 

Key words

apoptosis, mitochondrial pathway, VDAC2, Bax, Bak 

Download PDF
References

1. Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature Reviews Molecular Cell Biology. 2014;15(1):49–63.
2. Delbridge A.R.D., Grabow S., Strasser A., Vaux D.L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer. 2016;16(2):99–109.
3. Strasser A., Cory S., Adams J.M. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. The EMBO Journal. 2011;30(18):3667–3683.
4. Meier P., Finch A., Evan G. Apoptosis in development. Nature. 2000;407(6805):796–801.
5. Hotchkiss R.S., Strasser A., McDunn J.E., Swanson P.E. Cell Death. New England Journal of Medicine. 2009;361(16):1570–1583.
6. García-Sáez A.J. The secrets of the Bcl-2 family. Cell Death & Differentiation. 2012;19(11):1733–1740.
7. Youle R.J., Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology. 2008;9(1):47–59.
8. Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochemical and Biophysical Research Communications. 2018;500(1):26–34.
9. Eskes R., Antonsson B., Osen-Sand A., Montessuit S., Richter C., Sadoul R. [et al.]. Bax-induced Cytochrome C Release from Mitochondria Is Independent of the Permeability Transition Pore but Highly Dependent on Mg2+ Ions. Journal of Cell Biology. 1998;143(1):217–224.
10. Tait S.W.G., Green D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology. 2010;11(9):621–632.
11. Eskes R., Antonsson B., Osen-Sand A., Montessuit S., Richter C., Sadoul R. [et al.]. Bax-induced Cytochrome C Release from Mitochondria Is Independent of the Permeability Transition Pore but Highly Dependent on Mg2+ Ions. Journal of Cell Biology. 1998;143(1):217–224.
12. Fan T.-J., Han L.-H., Cong R.-S., Liang J. Caspase Family Proteases and Apoptosis. Acta Biochimica et Biophysica Sinica. 2005;37(11):719–727.
13. Green D.R. The Pathophysiology of Mitochondrial Cell Death. Science. 2004;305(5684):626–629.
14. Bratton S.B., Cohen G.M. Caspase Cascades in Chemically-Induced Apoptosis. Adv Exp Med Biol. 2001;500:407–420.
15. Chipuk J.E., Moldoveanu T., Llambi F., Parsons M.J., Green D.R. The BCL-2 Family Reunion. Molecular Cell. 2010;37(3):299–310.
16. Lauterwasser J., Todt F., Zerbes R.M., Nguyen T.N., Craigen W., Lazarou M. [et al.]. The porin VDAC2 is the mitochondrial platform for Bax retrotranslocation. Scientific Reports. 2016.
17. Verrier F., Mignotte B., Jan G., Brenner C. Study of PTPC Composition during Apoptosis for Identification of Viral Protein Target. Annals of the New York Academy of Sciences. 2003;1010(1):126–142.
18. McCommis K.S., Baines C.P. The role of VDAC in cell death: Friend or foe? Biochimica et Biophysica Acta (BBA) – Biomembranes. 2012;1818(6):1444–1450.
19. Ma S.B., Nguyen T.N., Tan I., Ninnis R., Iyer S., Stroud D.A. [et al.]. Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function. Cell Death & Differentiation. 2014;21(12):1925–1935.
20. Yamagata H., Shimizu S., Nishida Y., Watanabe Y., Craigen W. J., Tsujimoto Y. Requirement of voltage-dependent anion channel 2 for pro-apoptotic activity of Bax. Oncogene. 2009;28(40):3563–3572.
21. Roy S.S., Ehrlich A.M., Craigen W.J., Hajnóczky G., VDAC2 is required for truncated BID‐induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Reports. 2009;10(12):1341–1347.
22. Chin H.S., Li M.X., Tan I.K.L., Ninnis R.L., Reljic B., Scicluna K. [et al.]. VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications. 2018;9(1):4976.
23. Sarosiek K.A., Fraser C., Muthalagu N., Bhola P.D., Chang W., McBrayer S.K. [et al.]. Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell. 2017;31(1):142–156.
24. Arbiser J.L., Bonner M.Y., Gilbert L.C. Targeting the duality of cancer. Npj Precision Oncology. 2017;1(1):23.
25. Xu W., Jing L., Wang Q., Lin C.-C., Chen X., Diao J. [et al.]. Bax-PGAM5L-Drp1 com-plex is required for intrinsic apoptosis execution. Oncotarget. 2015;6(30):30017–30034.
26. Reichenbach F., Wiedenmann C., Schalk E., Becker D., Funk K., Scholz-Kreisel P. [et al.]. Mitochondrial BAX Determines the Predisposition to Apoptosis in Human AML. Clinical Cancer Research. 2017;23(16):4805–4816.
27. Todt F., Cakir Z., Reichenbach F., Emschermann F., Lauterwasser J., Kaiser A. [et al.]. Differential retrotranslocation of mitochondrial Bax and Bak. The EMBO Journal. 2015;34(1):67–80.
28. Schellenberg B., Wang P., Keeble J. A., Rodriguez-Enriquez R., Walker S., Owens T. W. [et al.]. Bax Exists in a Dynamic Equilibrium between the Cytosol and Mitochondria to Control Apoptotic Priming. Molecular Cell. 2013;49(5):959–971.
29. Edlich F., Banerjee S., Suzuki M., Cleland M.M., Arnoult D., Wang C. [et al.]. Bcl-xL Retrotranslocates Bax from the Mitochondria into the Cytosol. Cell. 2011;145(1):104–116.
30. Lovell J.F., Billen L.P., Bindner S., Shamas-Din A., Fradin C., Leber B. [et al.]. Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax. Cell. 2008;135(6):1074–1084.
31. Ma J., Edlich F., Bermejo G.A., Norris K.L., Youle R.J., Tjandra N. Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proceedings of the National Academy of Sciences. 2012;109(51):20901–20906.
32. Wei M.C., Lindsten T., Mootha V.K., Weiler S., Gross A., Ashiya M. [et al.]. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes & Development. 2000;14(16):2060–2071.
33. Edlich F., Banerjee S., Suzuki M., Cleland M.M., Arnoult D., Wang C. [et al.]. Bcl-xL Retrotranslocates Bax from the Mitochondria into the Cytosol. Cell. 2011;145(1):104–116.
34. Todt F., Cakir Z., Reichenbach F., Emschermann F., Lauterwasser J., Kaiser A. [et al.]. Differential retrotranslocation of mitochondrial Bax and Bak. The EMBO Journal. 2015;34(1):67–80.
35. Edlich F. The great migration of Bax and Bak. Molecular and Cellular Oncology. 2015;2(3).
36. Dudko H.V., Urban V.A., Davidovskii A.I., Veresov V.G. Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): Implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Computational Biology and Chemistry. 2020;85:107203.
37. Todt F., Cakir Z., Reichenbach F., Youle R.J., Edlich F. The C-terminal helix of Bcl-xL mediates Bax retrotranslocation from the mitochondria. Cell Death & Differentiation. 2013;20(2):333–342.
38. Cheng E.H.Y. VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis. Science. 2003;301(5632):513–517.
39. Plötz M., Gillissen B., Hossini A.M., Daniel P.T., Eberle J. Disruption of the VDAC2–Bak interaction by Bcl-xS mediates efficient induction of apoptosis in melanoma cells. Cell Death & Differentiation. 2012;19(12):1928–1938.
40. Wolter K.G., Hsu Y.-T., Smith C.L., Nechushtan A., Xi X.-G., Youle R. J. Movement of Bax from the Cytosol to Mitochondria during Apoptosis. Journal of Cell Biology. 1997;139(5):1281–1292.
41. Nechushtan A., Smith C.L., Hsu Y.T., Youle R.J. Conformation of the Bax C-terminus regulates subcellular location and cell death. The EMBO Journal. 1999;18(9):2330–2341.
42. Tait S.W.G., Green D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology. 2010;11(9):621–632.
43. Naghdi S., Várnai P., Hajnóczky G. Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proceedings of the National Academy of Sciences. 2015;112(41):E5590–9.
44. Goldar S., Khaniani M.S., Derakhshan S.M., Baradaran B. Molecular Mechanisms of Apoptosis and Roles in Cancer Development and Treatment. Asian Pacific Journal of Cancer Prevention. 2015;16(6):2129–2144.
45. Kontos C., Christodoulou M.-I., Scorilas A. Apoptosis-related BCL2-family Members: Key Players in Chemotherapy. Anti-Cancer Agents in Medicinal Chemistry. 2014;14(3):353–374.
46. Uo T., Kinoshita Y., Morrison R.S. Neurons Exclusively Express N-Bak, a BH3 Domain-only Bak Isoform That Promotes Neuronal Apoptosis. Journal of Biological Chemistry. 2005;280(10):9065–9073.
47. Van Delft M.F., Chappaz S., Khakham Y., Bui C.T., Debrincat M.A., Lowes K.N. [et al.]. A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nature Chemical Biology. 2019;15(11):1057–1066.
48. Wang Z., Qin J., Zhao J., Li J., Li D., Popp M. [et al.]. Inflammatory IFIT3 renders chemotherapy resistance by regulating post-translational modification of VDAC2 in pancreatic cancer. Theranostics. 2020;10(16):7178–7192.
49. Paramanathan T., Reeves D., Friedman L.J., Kondev J., Gelles J. A general mechanism for competitor-induced dissociation of molecular complexes. Nature Communications. 2014;5(1):5207.
50. Pedley R., King L.E., Mallikarjun V., Wang P., Swift J., Brennan K. [et al.]. BioIDbased proteomic analysis of the Bid interactome identifies novel proteins involved in cell-cycle-dependent apoptotic priming. Cell Death & Disease. 2020;11(10):872.

 

Дата создания: 22.02.2022 13:49
Дата обновления: 24.02.2022 14:13